
Package: tdata (via r-universe)
September 12, 2024

Title Prepare Your Time-Series Data for Further Analysis

Version 0.3.0

Description Provides a set of tools for managing time-series data,
with a particular emphasis on defining various frequency types
such as daily and weekly. It also includes functionality for
converting data between different frequencies.

License GPL (>= 3)

URL https://github.com/rmojab63/LDT

VignetteBuilder knitr

Encoding UTF-8

SystemRequirements C++17

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

Imports Rcpp

Suggests knitr, testthat, rmarkdown

LinkingTo BH, Rcpp

Config/testthat/edition 3

LazyData true

NeedsCompilation yes

Author Ramin Mojab [aut, cre]

Maintainer Ramin Mojab <rmojab63@gmail.com>

Date/Publication 2023-11-07 15:30:02 UTC

Repository https://rmojab63.r-universe.dev

RemoteUrl https://github.com/cran/tdata

RemoteRef HEAD

RemoteSha dce9befc22c743bbd868fd2967b70934884d4577

1

https://github.com/rmojab63/LDT

2 Contents

Contents

as.character.ldtf . 3
as.character.ldtv . 3
as.data.frame.ldtv . 4
as.frequency . 5
as.numeric.ldtv . 5
bind.variables . 6
convert.to.daily . 7
convert.to.multidaily . 7
convert.to.weekly . 8
convert.to.XxYear . 9
f.cross.section . 10
f.daily . 11
f.daily.in.week . 12
f.hourly . 13
f.list.date . 14
f.list.string . 16
f.minutely . 17
f.monthly . 18
f.multi.daily . 19
f.multi.weekly . 20
f.multi.yearly . 21
f.quarterly . 22
f.secondly . 23
f.weekly . 24
f.x.times.a.day . 26
f.x.times.a.year . 27
f.x.times.z.years . 28
f.yearly . 29
get.class.id . 30
get.class.id0 . 31
get.longrun.growth . 32
get.seq . 33
get.seq0 . 34
length.ldtv . 35
minus.freqs . 35
next.freq . 36
oil_price . 36
print.ldtf . 37
print.ldtv . 37
remove.na.strategies . 38
row.names.ldtv . 39
variable . 39

Index 41

as.character.ldtf 3

as.character.ldtf Convert Frequency to Character

Description

This function converts a frequency to its string representation. The format is explained in the f.?
functions.

Usage

S3 method for class 'ldtf'
as.character(x, ...)

Arguments

x The value of the frequency, which must be an ldtf object returned from the f.?
functions.

... Additional arguments.

Value

A string representation of the value of the frequency.

as.character.ldtv Convert a Variable to Character String

Description

Use this function to convert a variable to a compact form.

Usage

S3 method for class 'ldtv'
as.character(x, ...)

Arguments

x An object of class ldtv.

... Additional arguments.

Details

The returned character will have just one line, with items separated by tab or semi-colon.

4 as.data.frame.ldtv

Value

A character that represents the variable.

Examples

define the variable:
data <- c(1,2,3,2,3,4,5)
start_f <- f.monthly(2022,12)
fields <- list(c("key1","value1"), c("key2", "value2"))
v1 = variable(data,start_f, "V1", fields)

#string representation:
v1_str <- as.character(v1)

as.data.frame.ldtv Convert Variable to Data Frame

Description

Use this function to convert a variable to a data frame. You can use the result for plotting.

Usage

S3 method for class 'ldtv'
as.data.frame(x, ...)

Arguments

x An ldtv object.

... Additional arguments.

Value

A data frame in which row names are set from the frequency of the variable.

Examples

Define the variable:
data <- c(1,2,3,2,3,4,5)
start_f <- f.monthly(2022,12)
fields <- list(c("key1","value1"), c("key2", "value2"))
v1 = variable(data,start_f,"V1", fields)

convert it to data.frame
df1 <- as.data.frame(v1)

as.frequency 5

as.frequency Convert Character String to Frequency

Description

Use this function to convert a character string back to a frequency. You need the class id information.

Usage

as.frequency(str, classId)

Arguments

str The value of the frequency as a valid character, which you might have obtained
from the as.character.ldtf function.

classId The class id of the frequency. These are explained in f.? functions.

Value

A frequency, which is an object of class ’ldtf’. See the f.? functions.

as.numeric.ldtv Coerce Variable to ’numeric’

Description

Coerce Variable to ’numeric’

Usage

S3 method for class 'ldtv'
as.numeric(x, ...)

Arguments

x Variable with data field.

... Other arguments.

Value

data in x.

6 bind.variables

bind.variables Bind Variables and Create a Data.frame

Description

Use this function to bind variables with the same class of frequency together.

Usage

bind.variables(
varList,
interpolate = FALSE,
adjustLeadLags = FALSE,
numExo = 0,
horizon = 0

)

Arguments

varList A list of variables (i.e., ldtv objects) with similar frequency class.

interpolate If TRUE, missing observations are interpolated.

adjustLeadLags If TRUE, leads and lags are adjusted with respect to the first variable.

numExo An integer representing the number of exogenous variables.

horizon An integer representing the required length of out-of-sample data if adjustLeadLags
is TRUE and there are exogenous variables. It creates lags of exogenous variables
or omits NaNs to make data available.

Value

A list with the following members:

data A numeric matrix representing the final data after the requested fixes. It is a
matrix with variables in the columns and frequencies as the row names.

info An integer matrix containing information about the columns of the final data,
such as range of data, missing data, lags/leads, etc.

Examples

v1 = variable(c(1,2,3,2,3,4,5),f.monthly(2022,12),"V1")
v2 = variable(c(10,20,30,20,30,40,50),f.monthly(2022,8),"V2")
L = bind.variables(list(v1,v2))

convert.to.daily 7

convert.to.daily Convert Data to Daily Frequency

Description

Use this function to convert a time-series data (currently implemented: Date-List, Daily-In-Week)
to a time-series data with daily frequency.

Usage

convert.to.daily(variable, aggregateFun = NULL)

Arguments

variable A variable.

aggregateFun Function to aggregate data within each interval (see details).

Details

In some cases, conversion sorts the dates and fills any gaps between them with NA. However, in other
cases, conversion requires aggregation. For example, when aggregating hourly data over a period
of k hours to generate daily data, we expect k numbers in each interval. The aggregate function can
be set to calculate the mean, variance, median, etc., or any function that takes the vector of k values
and returns a number.

Value

A variable with daily frequency, with data sorted from the original variable and missing dates filled
with NA.

Examples

startFreq <- f.list.date(c("20220904","20220901"), "20220901")
v <- variable(c(4,1), startFreq)
w <- convert.to.daily(v)

convert.to.multidaily Convert Data to Multi-Day Frequency

Description

Use this function to convert a time-series data (currently implemented: daily) to a time-series data
with multi-day frequency.

Usage

convert.to.multidaily(variable, k, aggregateFun, fromEnd = TRUE)

8 convert.to.weekly

Arguments

variable A variable.

k Number of days in multi-day frequency, must be positive.

aggregateFun Function to aggregate data within each interval.

fromEnd If the number of observations is not divisible by k, this argument matters. If
TRUE, the last observation is the combination of k observations. Otherwise, the
last observation may be created from fewer observations.

Details

See the details section of the convert.to.daily function.

Value

A variable with multi-day frequency.

Examples

startFreq <- f.daily(c(2022, 9, 1))
v <- variable(c(1,2,3,4,5,6,7,8), startFreq)
w <- convert.to.multidaily(v, 3, function(x)mean(x, na.rm=TRUE))

convert.to.weekly Convert Data to Weekly Frequency

Description

Use this function to convert time-series data (currently implemented: daily) to time-series data with
weekly frequency.

Usage

convert.to.weekly(variable, weekStart, aggregateFun)

Arguments

variable A variable.

weekStart Determines the start day of the week, can be sun, mon, tue, wed, thu, fri, or
sat.

aggregateFun Function to aggregate data within each interval.

Details

See the details section of the convert.to.daily function.

convert.to.XxYear 9

Value

A variable with weekly frequency.

Examples

startFreq <- f.daily(c(2022, 9, 1))
v <- variable(c(1,2,3,4,5,6,7,8), startFreq)
w <- convert.to.weekly(v, "mon", function(x)mean(x, na.rm=TRUE))

convert.to.XxYear Convert Data to Year-Based Frequency

Description

Use this function to convert time-series data (currently implemented: daily) to time-series data with
year-based frequency such as monthly, quarterly, yearly, etc.

Usage

convert.to.XxYear(variable, x, aggregateFun)

Arguments

variable A variable.

x Determines the number of partitions in each year, for example, use 12 for monthly
data.

aggregateFun Function to aggregate data within each interval.

Details

See the details section of the convert.to.daily function.

Value

A variable with year-based frequency.

Examples

startFreq <- f.daily(c(2023,1,1))
v <- variable(c(1:(365*2)), startFreq)
w <- convert.to.XxYear(v,12,function(x)mean(x))

10 f.cross.section

f.cross.section Create a Cross-Section Frequency

Description

This frequency is typically used for indexed data. It is represented by an integer that indicates the
position of the observation.

Usage

f.cross.section(position)

Arguments

position An integer representing the position of the observation.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#" (the number is the position)

• Class Id "cs"

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

position Determines the position.

Examples

cs0 <- f.cross.section(10) # this initializes a cross-section frequency

cs0_value_str <- as.character(cs0) # this will be '10'.
cs0_class_str <- get.class.id(cs0) # this will be 'cs'.

cs_new <- as.frequency("20", "cs")
this is a cross-section frequency. It points to position 20.

f.daily 11

f.daily Create a Daily Frequency

Description

Use this function to create a frequency for time-series data that occurs daily.

Usage

f.daily(date)

Arguments

date The date, which can be a list with year, month, and day elements. It can also
be an integer array with 3 elements for year, month, and day respectively, or an
object that can be used as an argument for the base::as.Date function.

Details

To use the as.frequency function for this type of frequency, you need the following information:

• Character Format "YYYYMMDD" (similar to Weekly)
• Class Id "d"

Value

An object of class ldtf, which is also a list with the following members:

class Determines the class of this frequency.
year Determines the year.
month Determines the month.
day Determines the day.

Examples

d0 <- f.daily(c(2023, 1, 2)) # This is 2/1/2023. Next observation belongs to 3/1/2023.

d0_value_str <- as.character(d0) # this will be '20230102'.
d0_class_str <- get.class.id(d0) # this will be 'd'.

d_new <- as.frequency("20230109", "d") # This is 9/1/2023.

Don't use invalid or unsupported dates:

d_invalid <- try(as.frequency("1399109", "d")) # this is a too old date and unsupported
d_invalid <- try(as.frequency("20230132", "d")) # invalid day in month
d_invalid <- try(as.frequency("20231331", "d")) # invalid month

12 f.daily.in.week

f.daily.in.week Create a Daily-In-Week Frequency

Description

Use this function to create a frequency for time-series data that occurs daily within a subset of a
week. The first day of the interval is used as the reference.

Usage

f.daily.in.week(date, weekStart = "mon", weekEnd = "fri", forward = TRUE)

Arguments

date The date, which can be a list with year, month, and day elements. It can also
be an integer array with 3 elements for year, month, and day respectively, or an
object that can be used as an argument for the base::as.Date function.

weekStart The first day of the week, which can be sun, mon, tue, wed, thu, fri, or sat.

weekEnd The last day of the week, which can be one of the values listed for weekStart.
Together, they define the week.

forward If the current date is not in the week and this value is true, it moves forward to
the first day of the week. If this value is false, it moves backward to the last day
of the week.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: The first day of the interval in "YYYYMMDD" format.

• Class Id: "i:...-..." (where the first ’...’ represents weekStart and the second ’...’ repre-
sents weekEnd; e.g., i:mon-fri means a week from Monday to Friday)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

month Determines the month.

day Determines the day.

weekStart Determines the weekStart.

weekEnd Determines the weekEnd.

f.hourly 13

Examples

dw0 <- f.daily.in.week(c(2023, 5, 16), "mon", "fri") # This is 16/5/2023.
dw0_value_str <- as.character(dw0) # this will be '20230516'.
dw0_class_str <- get.class.id(dw0) # this will be 'i:mon-fri'.

Let's use the same date with another week definition:
dw1 <- f.daily.in.week(c(2023, 5, 16), "wed", "sat")
This is NOT 16/5/2023. It is 17/5/2023.
Since it was outside the week, we moved it forward.
dw2 <- f.daily.in.week(c(2023, 5, 16), "wed", "sat", FALSE)
This is 13/5/2023. The original day was outside the
week, but we moved backward too the end of
the previous week (which is Saturday).

dw_new <- as.frequency("20230519", "i:sat-wed")
This is 20/1/2023 (by default, it moves forward).

Don't use invalid or unsupported dates:

dw_invalid <- try(as.frequency("1399109", "d3")) # this is a too old date and unsupported
dw_invalid <- try(as.frequency("20230132", "d4")) # invalid day in month
dw_invalid <- try(as.frequency("20231331", "d5")) # invalid month

don't use invalid week definitions:
dw_invalid <- try(f.daily.in.week(c(2023, 5, 16), "Wednesday", "sat"))

f.hourly Create an ’Hourly’ Frequency

Description

Use this function to create a frequency for time-series data that occurs hourly in a day or a subset
of a week.

Usage

f.hourly(day, hour)

Arguments

day A ’Day-based’ object of class ldtf, such as Daily or Daily-In-Week.

hour The index of the hour in the day, which should be between 1 and 24.

14 f.list.date

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "YYYYMMDD:#" (where # represents the value of hour)

• Class Id: ho|... (where ’...’ represents the ’class id’ of day)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

day Determines the day.

hour Determines the hour.

Examples

ho0 <- f.hourly(f.daily(c(2023,5,16)),4)

ho0_value_str <- as.character(ho0) # this will be '20230516:4'.
ho0_class_str <- get.class.id(ho0)
this will be 'ho|d'. The second part (i.e., 'd')
shows that this frequency is defined in a 'Daily' frequency.

ho_new <- as.frequency("20231101:3", "ho|i:wed-sat")

Don't make the following mistakes:

ho_invalid <- try(as.frequency("20231101:3", "ho|j:wed-sat"))
invalid format in day-based frequency
ho_invalid <- try(f.hourly(f.daily(c(2023,5,16)),25)) # invalid hour

f.list.date Create a List-Date Frequency

Description

Use this frequency for data with date labels. It is generally a list of dates, but it can also be used to
label observations outside this list.

Usage

f.list.date(items, value = NULL, reformat = TRUE)

f.list.date 15

Arguments

items The items in the list in YYYYMMDD format.

value The current value in YYYYMMDD format. If null, the first value in items is used.

reformat If the elements of items are not in YYYYMMDD format, set this to be TRUE.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "YYYYMMDD" (i.e., the item)

• Class Id: Ld or Ld:... (where ’...’ represents the semi-colon-separated items)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

items Determines the items.

value Determines the value.

Examples

Ld0 <- f.list.date(c("20231101","20220903","20200823","20230303"), "20200823")

Ld0_value_str <- as.character(Ld0) # this will be '20200823'.
Ld0_class_str <- get.class.id(Ld0)
this will be 'Ld:20231101;20220903;20200823;20230303'.

Ld_new <- as.frequency("20231101", "Ld:20231101;20220903;20200823;20230303")
Ld_new0 <- as.frequency("20231101", "Ld")
compared to the previous one, its items will be empty

Don't make the following mistakes:

Ld_invalid <- try(as.frequency("20231102", "Ld:20231101;20220903;20200823;20230303"))
'E' is not a member of the list

Ld_invalid <- try(f.list.date(c("20231101","20220903","20200823","20230303"), "20231102"))

16 f.list.string

f.list.string Create a List-String Frequency

Description

This frequency is typically used for labeled data. It is generally a list, but it can also be used to label
observations outside this list.

Usage

f.list.string(items, value)

Arguments

items The items in the list.
value The current item.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "..." (where ’...’ represents the value)
• Class Id: Ls or Ls:... (where ’...’ represents the semi-colon-separated items)

Value

An object of class ldtf, which is also a list with the following members:

class Determines the class of this frequency.
items Determines the items.
value Determines the value.

Examples

L0 <- f.list.string(c("A","B","C","D"), "C")

L0_value_str <- as.character(L0) # this will be 'C'.
L0_class_str <- get.class.id(L0) # this will be 'Ls:A;B;C;D'.

L_new <- as.frequency("A", "Ls:A;B;C;D")
L_new0 <- as.frequency("A", "Ls") # compared to the previous one, its items will be empty

Don't make the following mistakes:

L_invalid <- try(as.frequency("E", "Ls:A;B;C;D")) # 'E' is not a member of the list
L_invalid <- try(f.list.string(c("A","B","C","D"), "E"))

f.minutely 17

f.minutely Create a Minute-ly Frequency

Description

Use this function to create a frequency for time-series data that occurs every minute in a day or a
subset of a week.

Usage

f.minutely(day, minute)

Arguments

day A ’Day-based’ object of class ldtf, such as Daily or Daily-In-Week.

minute The index of the minute in the day, which should be between 1 and 1440.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "YYYYMMDD:#" (where # represents the value of minute)

• Class Id: mi|... (where ’...’ represents the ’class id’ of day)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

day Determines the day.

minute Determines the minute.

Examples

mi0 <- f.minutely(f.daily(c(2023,5,16)),1200)

mi0_value_str <- as.character(mi0) # this will be '20230516:1200'.
mi0_class_str <- get.class.id(mi0)
this will be 'mi|d'. The second part (i.e., 'd')
shows that this frequency is defined in a 'Daily' frequency.

mi_new <- as.frequency("20231101:3", "mi|i:wed-sat")

Don't make the following mistakes:

mi_invalid <- try(as.frequency("20231101:3", "mi|j:wed-sat"))
invalid format in day-based frequency

18 f.monthly

mi_invalid <- try(f.minutely(f.daily(c(2023,5,16)),2000)) # invalid minute

f.monthly Create a Monthly Frequency

Description

Use this function to create a frequency for time-series data that occurs monthly.

Usage

f.monthly(year, month)

Arguments

year An integer representing the year of the observation.

month An integer representing the month of the observation (It should be between 1 to
12).

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#m#" (first # is the year, second # is the month (1 to 12); e.g., 2010m8
or 2010m12. Note that 2000m0 or 2000m13 are invalid.

• Class Id "m"

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

month Determines the month.

Examples

m0 <- f.monthly(2020, 2)
this is a monthly frequency that refers to the second month of the year 2020.

m0_value_str <- as.character(m0) # this will be '2020M2'.
m0_class_str <- get.class.id(m0) # this will be 'm'.

m_new <- as.frequency("2021m3", "m")
this is a monthly frequency that refers to the third month of the year 2021.

f.multi.daily 19

Don't make the following mistakes:

m_invalid <- try(f.monthly(2020, 0))
m_invalid <- try(f.monthly(2020, 5))
m_invalid <- try(as.frequency("2021m0", "m"))
m_invalid <- try(as.frequency("2021m13", "m"))
m_invalid <- try(as.frequency("2021", "m"))

f.multi.daily Create a Multi-Day Frequency

Description

Use this function to create a frequency for time-series data that occurs every k days. The first day
of the interval is used as the reference.

Usage

f.multi.daily(date, k)

Arguments

date The date, which can be a list with year, month, and day elements. It can also
be an integer array with 3 elements for year, month, and day respectively, or an
object that can be used as an argument for the base::as.Date function.

k The number of days in the interval.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: The first day of the interval in "YYYYMMDD" format.

• Class Id: "d#" (where # is the value of k; e.g., d3 means every 3 days)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

month Determines the month.

day Determines the day.

k Determines the value: k.

20 f.multi.weekly

Examples

md0 <- f.multi.daily(c(2023, 1, 2), 4) # This is 2/1/2023. Next observation belongs to 6/1/2023.

md0_value_str <- as.character(md0) # this will be '20230102'.
md0_class_str <- get.class.id(md0) # this will be 'd4'.

md_new <- as.frequency("20230109", "d") # This is 9/1/2023.

Don't use invalid or unsupported dates:

md_invalid <- try(as.frequency("1399109", "d3")) # this is a too old date and unsupported
md_invalid <- try(as.frequency("20230132", "d4")) # invalid day in month
md_invalid <- try(as.frequency("20231331", "d5")) # invalid month

f.multi.weekly Create a Multi-Week Frequency

Description

Use this function to create a frequency for time-series data that occurs every ’k’ weeks. The first
day of the first week is used as the reference.

Usage

f.multi.weekly(date, k)

Arguments

date The date, which can be a list with year, month, and day elements. It can also
be an integer array with 3 elements for year, month, and day respectively, or an
object that can be used as an argument for the base::as.Date function.

k The number of weeks.

Details

To use the as.frequency function for this type of frequency, you need the following information:

• Character Format The first day of the first week in "YYYYMMDD" format.

• Class Id "w#" (the number is the value of k; e.g., w3 means every 3 weeks)

Value

An object of class ldtf, which is also a list with the following members:

class The class of this frequency.

year The year.

f.multi.yearly 21

month The month.

day The day.

k The value of k.

Examples

mw0 <- f.multi.weekly(c(2023, 1, 2), 3)
This is 2/1/2023, which is Monday. The next observation belongs to 23/1/2023.

mw0_value_str <- as.character(mw0) # This will be '20230102'.
mw0_class_str <- get.class.id(mw0) # This will be 'w3'.

mw_new <- as.frequency("20230109", "w4") # This is 9/1/2023.

Don't use invalid or unsupported dates:

mw_invalid <- try(as.frequency("1399109", "w4")) # this is a too old date and unsupported
mw_invalid <- try(as.frequency("20230132", "w5")) # invalid day in month
mw_invalid <- try(as.frequency("20231331", "w2")) # invalid month
mw_invalid <- try(as.frequency("20231012", "w0"))

f.multi.yearly Create a Multi-Year Frequency

Description

Use this function to create a frequency for time-series data that occurs every z years.

Usage

f.multi.yearly(year, z)

Arguments

year An integer representing the year of the observation.

z An integer representing the number of years. It should be larger than zero.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#" (the number is the year, which means the string representation is the
first year of the interval)

• Class Id "z#" (’#’ represents the value: z; e.g., z3 means every 3 years)

22 f.quarterly

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

z Determines the value: z.

Examples

my0 <- f.multi.yearly(2020, 2)
this is a multi-year frequency that refers to the year 2020.
The next observation is expected in 2022 (not the next year).

my0_value_str <- as.character(my0) # this will be '2020'.
my0_class_str <- get.class.id(my0) # this will be 'z2'.

my_new <- as.frequency("2020", "z3")
this is a multi-year frequency that refers to the year 2020.
However, the next observation is expected in 2023.

Don't make the following mistakes:

my_invalid <- try(f.multi.yearly(2020, 0))
my_invalid <- try(f.multi.yearly(2020, -5))
my_invalid <- try(as.frequency("2021", "z"))

f.quarterly Create a Quarterly Frequency

Description

Use this function to create a frequency for time-series data that occurs quarterly.

Usage

f.quarterly(year, quarter)

Arguments

year An integer representing the year of the observation.

quarter An integer representing the quarter of the observation (It should be between 1
and 4).

f.secondly 23

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#q#" (first ’#’ is the year, second ’#’ is the quarter; e.g., 2010q3 or
2010q4. Note that 2000q0 or 2000q5 are invalid.

• Class Id "q"

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

quarter Determines the quarter.

Examples

q0 <- f.quarterly(2020, 2)
this is a quarterly frequency that refers to the second quarter of the year 2021.

q0_value_str <- as.character(q0) # this will be '2020Q2'.
q0_class_str <- get.class.id(q0) # this will be 'q'.

q_new <- as.frequency("2021q3", "q")
this is a quarterly frequency that refers to the third quarter of the year 2021.

Don't make the following mistakes:

q_invalid <- try(f.quarterly(2020, 0))
q_invalid <- try(f.quarterly(2020, 5))
q_invalid <- try(as.frequency("2021q0", "q"))
q_invalid <- try(as.frequency("2021q5", "q"))
q_invalid <- try(as.frequency("2021", "q"))

f.secondly Create a Second-ly Frequency

Description

Use this function to create a frequency for time-series data that occurs every second in a day or a
subset of a week.

Usage

f.secondly(day, second)

24 f.weekly

Arguments

day A ’Day-based’ object of class ldtf, such as Daily or Daily-In-Week.

second The index of the second in the day, which should be between 1 and 86400.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "YYYYMMDD:#" (where # represents the value of second)

• Class Id: se|... (where ’...’ represents the ’class id’ of day)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

day Determines the day.

second Determines the second.

Examples

se0 <- f.secondly(f.daily(c(2023,5,16)),40032)

se0_value_str <- as.character(se0) # this will be '20230516:40032'.
se0_class_str <- get.class.id(se0)
this will be 'se|d'. The second part (i.e., 'd') shows
that this frequency is defined in a 'Daily' frequency.

se_new <- as.frequency("20231101:3", "se|i:wed-sat")

Don't make the following mistakes:

mi_invalid <- try(as.frequency("20231101:3", "se|j:wed-sat"))
invalid format in day-based frequency
mi_invalid <- try(f.secondly(f.daily(c(2023,5,16)),100000)) # invalid second

f.weekly Create a Weekly Frequency

Description

Use this function to create a frequency for time-series data that occurs weekly. The first day of the
week is used as the reference.

f.weekly 25

Usage

f.weekly(date)

Arguments

date The date, which can be a list with year, month, and day elements. It can also
be an integer array with 3 elements for year, month, and day respectively, or an
object that can be used as an argument for the base::as.Date function. This
date determines the start of the week.

Details

To use the as.frequency function for this type of frequency, you need the following information:

• Character Format The first day of the week in "YYYYMMDD" format.

• Class Id "w"

Value

An object of class ldtf, which is also a list with the following members:

class The class of this frequency.

year The year.

month The month.

day The day.

Examples

w0 <- f.weekly(c(2023, 1, 2)) # This is 2/1/2023, which is Monday.
The next observation belongs to 9/1/2023.

w0_value_str <- as.character(w0) # this will be '20230102'.
w0_class_str <- get.class.id(w0) # this will be 'w'.

w_new <- as.frequency("20230109", "w") # This is 9/1/2023.

Don't use invalid or unsupported dates:

w_invalid <- try(as.frequency("1399109", "w")) # this is a too old date and unsupported
w_invalid <- try(as.frequency("20230132", "w")) # invalid day in month
w_invalid <- try(as.frequency("20231331", "w")) # invalid month

26 f.x.times.a.day

f.x.times.a.day Create an X-Times-A-Day Frequency

Description

Use this function to create a frequency for time-series data that occurs x times in a day or a subset
of a week.

Usage

f.x.times.a.day(day, x, position)

Arguments

day A ’Day-based’ object of class ldtf, such as Daily or Daily-In-Week.

x The number of observations in each day.

position The position of the current observation, which should be a positive integer and
cannot be larger than x.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format: "#" (where ’#’ represents the value of position)

• Class Id: "da#|..." (where ’#’ represents the value of x and ’...’ represents the ’class id’ of
day)

Value

An object of class ldtf. It is also a list with the following members:

class Determines the class of this frequency.

day Determines the day.

second Determines the second.

Examples

xd0 <- f.x.times.a.day(f.daily(c(2023,5,16)),13, 12)

xd0_value_str <- as.character(xd0) # this will be '20230516:12'.
xd0_class_str <- get.class.id(xd0)
this will be 'da13|d'. The second part (i.e., 'd')
shows that this frequency is defined in a 'Daily' frequency.

xd_new <- as.frequency("20231101:3", "da3|i:wed-sat")

Don't make the following mistakes:

f.x.times.a.year 27

xd_invalid <- try(as.frequency("20231101:3", "da|i:wed-sat"))
invalid format in day-based frequency
xd_invalid <- try(f.x.times.a.day(f.daily(c(2023,5,16)),4,0)) # invalid position

f.x.times.a.year Create an X-Times-A-Year Frequency

Description

Use this function to create a frequency for time-series data that occurs x times every year.

Usage

f.x.times.a.year(year, x, position)

Arguments

year An integer representing the year of the observation.

x An integer representing the number of observations in each year. It should be a
positive integer.

position An integer representing the position of the current observation. It should be a
positive integer and cannot be larger than x.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#:#" (first # is the year and the second # is the position; e.g., 2010:8/12
or 2010:10/10. Note that 2000:0/2 or 2000:13/12 are invalid.

• Class Id "y#" (the number is the value: x)

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

x Determines the value: x.

position Determines the position.

28 f.x.times.z.years

Examples

xty0 <- f.x.times.a.year(2020, 3, 1)
this frequency divides the year 2020 into 3 partitions
and refers to the first partition.

xty_value_str <- as.character(xty0) # this will be '2020:1'.
xty_class_str <- get.class.id(xty0) # this will be 'y3'.

xty_new <- as.frequency("2021:24", "z24")
this frequency divides the year 2021 into 24 partitions
and refers to the last partition.

Don't make the following mistakes:

xty_invalid <- try(f.x.times.a.year(2020, 3, 0))
xty_invalid <- try(f.x.times.a.year(2020, 24, 25))
xty_invalid <- try(as.frequency("2021:13", "y12"))
xty_invalid <- try(as.frequency("2021:0", "y1"))
xty_invalid <- try(as.frequency("2021", "y1"))

f.x.times.z.years Create an X-Times-Z-Years Frequency

Description

Use this function to create a frequency for time-series data that occurs x times every z years.

Usage

f.x.times.z.years(year, x, z, position)

Arguments

year An integer representing the year of the observation.

x An integer representing the number of partitions in each z years. It should be a
positive integer.

z An integer representing the number of years. It should be a positive integer.

position An integer representing the position of the current observation. It should be a
positive integer and cannot be larger than x.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

f.yearly 29

• Character Format "#:#" (Similar to X-Times-A-Year. Note that the string representation
refers to the first year of the interval.)

• Class Id "x#z#" (first ’#’ is the value: x, second ’#’ is the value: z; e.g., x23z4 means 23
times every 4 years)

Value

An object of class ldtf, which is also a list with the following members:

class The class of this frequency.

year The year.

z The value: z.

x The value: x.

position The position.

Examples

xtzy0 <- f.x.times.z.years(2020, 3, 2, 3)
This frequency divides the year 2020 into 3 partitions and
refers to the last partition. The next observation
belongs to 2022 (not the next year).

xtzy_value_str <- as.character(xtzy0) # This will be '2020:3'.
xtzy_class_str <- get.class.id(xtzy0) # This will be 'x3z2'.

xtzy_new <- as.frequency("2021:3", "x3z4")
This frequency divides the year 2021 into 3 partitions
and refers to the last partition. The next observation occurs after 4 years.

Don't make the following mistakes:

xtzy_invalid <- try(f.x.times.z.years(2020, 3, 5, 0))
xtzy_invalid <- try(f.x.times.z.years(2020, 3, 0, 1))
xtzy_invalid <- try(as.frequency("2021:25", "x24y2"))

f.yearly Create an Annual Frequency

Description

Use this function to create a frequency for time-series data that occurs annually.

Usage

f.yearly(year)

30 get.class.id

Arguments

year An integer representing the year of the observation.

Details

In order to use the as.frequency function for this type of frequency, you need the following infor-
mation:

• Character Format "#" (the number is the year)

• Class Id "y"

Value

An object of class ldtf which is also a list with the following members:

class Determines the class of this frequency.

year Determines the year.

Examples

y0 <- f.yearly(2020) # this initializes a 'yearly' frequency

y0_value_str <- as.character(y0) # this will be '2020'.
y0_class_str <- get.class.id(y0) # this will be 'y'.

y_new <- as.frequency("2021", "y") # this is a yearly frequency. It points to year 2021.

get.class.id Get the Class Id of a Frequency

Description

Use this function to get the ’id’ of a frequency class.

Usage

get.class.id(frequency)

Arguments

frequency The frequency, which must be an ldtf object returned from the f.? functions.

Details

You need this ’id’ to convert the character back to the object. Some frequencies have a constant
class id, such as ’m’ for ’monthly’ data. Some class ’ids’ have parameters in them. Note that the
format is explained in the f.? functions.

get.class.id0 31

Value

A character string that represents the class id of this frequency.

Examples

freq <- f.x.times.a.day(f.daily(c(2023,5,16)),13, 12)
freq_class_id <- get.class.id(freq) # this will be 'da13|d'.

get.class.id0 Convert Frequency to Character and Class Id

Description

This function returns the output of the as.character.ldtf and get.class.id functions.

Usage

get.class.id0(frequency)

Arguments

frequency The value of the frequency, which must be an ldtf object returned from the f.?
functions.

Value

A list with the following items:

• value: The string representation of the frequency. If you only want this, use the as.character()
function.

• day: The class Id of this frequency. If you only want this, use the get.class.id function.

• classType: The type of the class.

See Also

get.class.id

Examples

freq <- f.x.times.a.day(f.daily(c(2023,5,16)),13, 12)
freq_class_id <- get.class.id0(freq)

freq1 <- f.monthly(2020,3)
freq1_class_id <- get.class.id0(freq1)

32 get.longrun.growth

get.longrun.growth Calculate Long-run Growth

Description

Use this function to calculate the long-run growth of a time-series data.

Usage

get.longrun.growth(
data,
continuous = FALSE,
isPercentage = FALSE,
trimStart = 0,
trimEnd = 0,
skipZero = TRUE

)

Arguments

data A numeric vector that represents the data of the series.

continuous A logical value indicating whether to use the continuous formula.

isPercentage A logical value indicating whether the unit of measurement in data is a percent-
age (e.g., growth rate). If TRUE, the long-run growth rate is calculated by the
arithmetic mean for the continuous case and the geometric mean otherwise. If
missing data exists, it returns NA.

trimStart If the number of leading NAs is larger than this number, the function returns NA.
Otherwise, it finds the first non-NA value and continues the calculations.

trimEnd Similar to trimStart, but for the end of the series.

skipZero If TRUE, leading and trailing zeros are skipped, similar to NA.

Details

A variable can have discrete growth (y(t) = y(0)(1+g1)(1+g2) . . . (1+gt)) or continuous growth
(y(t) = y(0)eg1eg2 . . . egt) over t periods. y(0) is the first value and y(n) is the last value. By long-
run growth rate, we mean a number such as g such that if we start from y(0) and the variable growth
is g every period, we reach y(t) after t periods. This number summarizes all gis, however, it is not
generally the average of these rates.

Value

The long-run growth rate (percentage).

get.seq 33

Examples

y <- c(60, 70, 80, 95)
g <- get.longrun.growth(y, isPercentage = TRUE, continuous = FALSE)
Note that 'g' is different from 'mean(y)'.

get.seq Generate a Sequence from a Range of Frequencies

Description

Use this function to generate a list of character strings, where each element is a string representation
of a frequency within the specified range.

Usage

get.seq(from, to, by = 1)

Arguments

from The first frequency of the sequence.
to The last frequency of the sequence.
by An integer that determines the increment of the sequence.

Details

The two arguments from and to should be valid frequencies (see the f.? functions). They should
also be consistent; you cannot create a sequence in which one is, for example, monthly and the
other is yearly.

Value

A list of character strings that represents the sequence.

See Also

get.seq0

Examples

from <- f.monthly(2020,1)
to <- f.monthly(2021,12)
sequence1 <- get.seq(from, to, 1) # this will be '2020M1', '2020M2', ..., '2021M12'
sequence2 <- get.seq(from, to, 2) # this will be '2020M1', '2020M3', ..., '2021M11'
sequence3 <- get.seq(from, to, 3) # this will be '2020M1', '2020M4', ..., '2021M10'

backward:
sequence4 <- get.seq(to, from, -1) # this will be '2021M12', '2021M11', ..., '2020M1'

34 get.seq0

get.seq0 Generate a Sequence from a Range of Frequencies

Description

Use this function to generate a list of character strings, where each element is a string representation
of a frequency within the specified range.

Usage

get.seq0(start, length, by = 1)

Arguments

start The first frequency of the sequence.

length The length of the sequence.

by An integer that determines the increment of the sequence.

Value

A list of character strings that represents the sequence.

See Also

get.seq

Examples

start <- f.monthly(2020,1)
sequence1 <- get.seq0(start, 24, 1) # this will be '2020M1', '2020M2', ..., '2021M12'
sequence2 <- get.seq0(start, 24, 2) # this will be '2020M1', '2020M3', ..., '2023M11'
sequence3 <- get.seq0(start, 24, 3) # this will be '2020M1', '2020M4', ..., '2025M10'

backward:
sequence4 <- get.seq0(start, 24, -1) # this will be '2020M1', '2019M12', ..., '2018M2'

Lists are a little different:
start_l <- f.list.string(c("A","B","C","D"), "C")
sequence5 <- get.seq0(start_l, 5, 1) # this will be 'C', 'D', 'out_item:1', ..., 'out_item:3'

length.ldtv 35

length.ldtv Get Length of Data in a Variable

Description

Get Length of Data in a Variable

Usage

S3 method for class 'ldtv'
length(x)

Arguments

x Variable with data field.

Value

Length of data in x.

minus.freqs Get Interval between two frequencies

Description

Use this function to get the number of intervals between two frequencies.

Usage

minus.freqs(freq1, freq2)

Arguments

freq1 The first frequency.

freq2 The second frequency.

Value

The number of intervals between the two frequencies (freq1 - freq2).

Examples

f1 <- f.yearly(2000)
f2 <- f.yearly(2010)
count <- minus.freqs(f1, f2) # this is -10
count <- minus.freqs(f2, f1) # this is 10

36 oil_price

next.freq Get Next Frequency

Description

Use this function to get the next frequency.

Usage

next.freq(freq, count)

Arguments

freq A frequency.

count Determines the number of steps. If negative, it returns the previous frequency.

Value

The next frequency after the given frequency.

Examples

f <- f.yearly(2000)
fn <- next.freq(f, 10) # this is 2010

oil_price Data for Vignette

Description

This is oil price data from 2010 retrieved by using the following code: oil_price <- Quandl::Quandl("OPEC/ORB",
start_date="2010-01-01") It is saved due to the fact that CRAN checks may fail if the vignette
relies on an external API call.

Usage

oil_price

Format

A data.frame with 2 columns: Date and Value

print.ldtf 37

print.ldtf Print a Frequency

Description

Print a Frequency

Usage

S3 method for class 'ldtf'
print(x, ...)

Arguments

x A frequency which is the output of f.? functions in this package.

... Additional arguments

Value

NULL

print.ldtv Print a Variable

Description

Use this to print a variable.

Usage

S3 method for class 'ldtv'
print(x, ...)

Arguments

x A variable which is an object of class ldtv.

... Additional arguments

Value

NULL

38 remove.na.strategies

remove.na.strategies Scenarios for Removing NAs

Description

Use this function to remove NA values from a matrix. This helps you to optimize the size of the
information.

Usage

remove.na.strategies(
data,
countFun = function(nRows, nCols) nRows * nCols,
rowIndices = NULL,
colIndices = NULL,
printMsg = FALSE

)

Arguments

data A matrix that contains NA values.

countFun A function to determine how strategies are sorted. The default function counts
the number of observations. You might want to give columns a higher level of
importance, for example, by using nRows*nCols^1.5.

rowIndices The indices of the sorted rows to search. Use this to create jumps for a large
number of rows (e.g., if the first sorted strategies suggest a small number of
columns and you are looking for other strategies). Use NULL to disable it.

colIndices Similar to rowIndices, but for columns.

printMsg If TRUE, it prints the progress.

Details

When a matrix has NA values, one can omit columns with NA, rows with NA, or a combination of
these two. The total number of observations is a function of the order. This function tries all
combinations and returns the results.

Value

A list of lists, each with the following elements:

nRows The number of rows in the matrix.

nCols The number of columns in the matrix.

colRemove The indices of the columns to be removed.

rowRemove The indices of the rows to be removed.

row.names.ldtv 39

Examples

data <- matrix(c(NA, 2, 3, 4, NA, 5, NA, 6, 7, NA, 9, 10, 11, 12, 13, 14, 15, NA, 16, 17), 4, 5)
res <- remove.na.strategies(data)

row.names.ldtv Get Row Names of a Variable

Description

Get Row Names of a Variable

Usage

S3 method for class 'ldtv'
row.names(x)

Arguments

x Variable with startFrequency field

Value

A character string vector with frequencies of the observations as the row names.

variable Create a Variable

Description

Use this function to create a variable, which is a data array with frequencies. It can have a name
and other named fields.

Usage

variable(data, startFrequency = NULL, name = NULL, fields = NULL)

Arguments

data The data of the variable.

startFrequency The frequency of the first element.

name The name of the variable.

fields A list that contains named fields.

40 variable

Value

An object of class ldtv, which is also a list with the following members:

• data: Determines the data.

• name: Determines the name.

• startFrequency: Determines the startFrequency.

• fields: Determines the fields.

Examples

data <- c(1,2,3,2,3,4,5)
start_f <- f.monthly(2022,12)
fields <- list(c("key1","value1"), c("key2", "value2"))
v1 = variable(data, start_f, "V1", fields)

Index

∗ datasets
oil_price, 36

as.character.ldtf, 3, 5, 31
as.character.ldtv, 3
as.data.frame.ldtv, 4
as.frequency, 5, 10–12, 14–21, 23–28, 30
as.numeric.ldtv, 5

bind.variables, 6

convert.to.daily, 7, 8, 9
convert.to.multidaily, 7
convert.to.weekly, 8
convert.to.XxYear, 9

f.cross.section, 10
f.daily, 11
f.daily.in.week, 12
f.hourly, 13
f.list.date, 14
f.list.string, 16
f.minutely, 17
f.monthly, 18
f.multi.daily, 19
f.multi.weekly, 20
f.multi.yearly, 21
f.quarterly, 22
f.secondly, 23
f.weekly, 24
f.x.times.a.day, 26
f.x.times.a.year, 27
f.x.times.z.years, 28
f.yearly, 29

get.class.id, 30, 31
get.class.id0, 31
get.longrun.growth, 32
get.seq, 33, 34
get.seq0, 33, 34

length.ldtv, 35

minus.freqs, 35

next.freq, 36

oil_price, 36

print.ldtf, 37
print.ldtv, 37

remove.na.strategies, 38
row.names.ldtv, 39

variable, 39

41

	as.character.ldtf
	as.character.ldtv
	as.data.frame.ldtv
	as.frequency
	as.numeric.ldtv
	bind.variables
	convert.to.daily
	convert.to.multidaily
	convert.to.weekly
	convert.to.XxYear
	f.cross.section
	f.daily
	f.daily.in.week
	f.hourly
	f.list.date
	f.list.string
	f.minutely
	f.monthly
	f.multi.daily
	f.multi.weekly
	f.multi.yearly
	f.quarterly
	f.secondly
	f.weekly
	f.x.times.a.day
	f.x.times.a.year
	f.x.times.z.years
	f.yearly
	get.class.id
	get.class.id0
	get.longrun.growth
	get.seq
	get.seq0
	length.ldtv
	minus.freqs
	next.freq
	oil_price
	print.ldtf
	print.ldtv
	remove.na.strategies
	row.names.ldtv
	variable
	Index

